Overview of the WRF/Chem modeling system

Georg Grell Steven Peckham

WRF/Chem web site - http://wrf-model.org/WG11

Earth System Research Laboratory

WRF/Chem

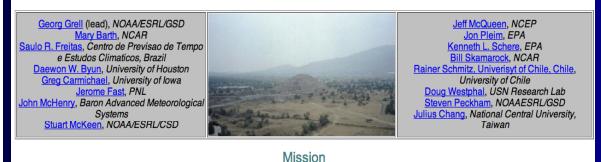
What is it?

What can it do?

Where can I get it?

WRF/Chem

Community effort


<u>Largest contributing groups:</u> <u>ESRL, PNNL, NCAR</u>

<u>Other significant contributions</u> from: MPI Mainz, CPTEC Brazil, CDAC India, U of Chile

WRF/Chem web page and community support

Weather Research and Forecasting (WRF) Model

WORKING GROUP 11: ATMOSPHERIC CHEMISTRY

The mission of the atmospheric chemistry working group is to guide the development of the capability to simulate chemistry and aerosols — online as well as offline — within the WRF model. The resulting WRF/Chem model will have the option to simulate the coupling between dynamics, radiation and chemistry. Uses include forecasting chemical-weather, testing air pollution abatement strategies, planning and forecasting for field campaigns, analyzing measurements from field campaigns and the assimilation of satellite and in-situ chemical measurements.

Interaction with other WRF Groups

The initial development of WRF/Chem is involved with the Numerics and Model Dynamics (WG1), Model Physics (WG5), and Land Surface Modeling (WG14).

Community Involvement

2007 WRF workshop information - Meeting minutes and mini-tutorial presentations

2006 WRF workshop working group 11 meeting minutes

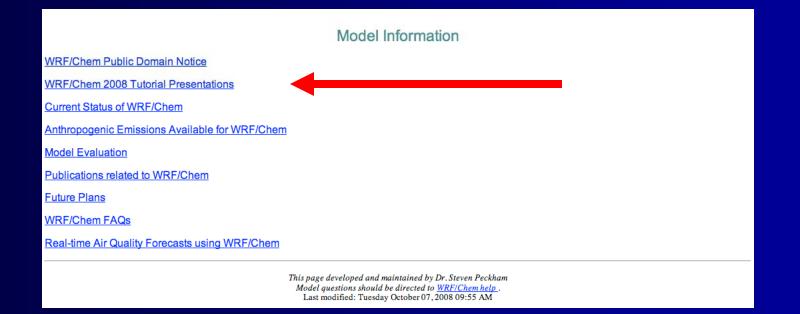
Known issues with the WRF model.

Known issues with the WRF/Chem model. Updated for version 3.01

Email WRF/Chem help with question regarding WRF/Chem model.

WRF/Chem related announcements. Updated 16 July 2008

WRF/Chem version 3.0 Users Guide Updated 22 July 2008


- http://wrf-model.org/WG11
 - Community leaders

• Mission, collaboration

• WRF community news

WRF/Chem web page and community support

- http://wrf-model.org/WG11
 - Tutorial presentations, status, emissions info, FAQs, real time forecast links

WRF/Chem Community Support

- Hundreds of users
- International community
 - Continuing rapid growth

• Tutorials held in scenic Boulder, Colorado

WRF Community Support

http://www.mmm.ucar.edu/wrf/users/tutorial/tutorial_presentation.htm

WRF	USERS	PAGE			7	A.	- A is	
Home	Model System	User Support	Download	Doc / Pub	Links	Users Forum	WRF Forecast	
	WRF TUTORIAL PRESENTATIONS							
	POV	POWER POINT SLIDES PRESENTED AT THE JULY 2008 BASIC WRF TUTORIAL						
		WRF Modeling System Overview						
		WPS						
		General						
		Setup and						
		Advanced						
		Compile WRF & WPS						
		Model						
		ARW Dynamics and Numerics						
		NMM Dynamics and Numerics						
		Physics						
		ARW nudging						
		WRF Nesting						
		WRF - Setup and Run						
		WRF Nesting - Setup and Run						
		Additional Namelist Options						
		Initialization						
		Idealized Data						
		Real Data						
		Graphics						
		NCL ARWpost						
		RIP4						
		WPP						
		WRF Utilities						
		WRF Software						
		Registry and Examples						
		Architecture						
		Objective Analysis (OBSGRID)						
		Model Evaluation Tools (MET)						
		Domain Wizard						

WRF/Chem

- Online, completely embedded within WRF
- Consistent: all transport done by meteorological model
 - Same vertical and horizontal coordinates (no horizontal and vertical interpolation)
 - Same physics parameterization for subgrid scale transport
 - No interpolation in time
- Easy handling (Data management)
- Very modular approach
 - Chemistry subdirectory has been implemented in versions of HIRLAM
 - Is being implemented now into FIM global model (icosahedral in horizontal, vertical adaptive coordinates
- Runs on a variety of computing platforms (PC to large clusters)

Chemistry packages: biogenic emissions modules

- Biogenic emissions (as in Simpson et al. 1995 and Guenther et al. 1994), include temperature and radiation dependent emissions of isoprene, monoterpenes, also nitrogen emissions by soil
 - May be calculated "online" based on USGS landuse
 - May be input
 - BEISv3.13 (offline reference fields, online modified)
 - Model for Emissions of Gases and Aerosols from Nature (MEGAN)

Gas Phase Chemistry Packages

- Chemical mechanism from RADM2 (Quasi Steady State Approximation method with 22 diagnosed, 3 constant, and 38 predicted species is used for the numerical solution)
- Carbon Bond (CBM-Z) based chemical mechanism, and the
- <u>Kinetic</u> <u>Pre</u>Processor (KPP)

Available Aerosols modules

- 1. PM advection, transport, emissions and deposition only
- 2. Modal approach (MADE/SORGAM)
- 3. Sectional approach (MOSAIC)
- 4. Now also: GOCART

Aerosol direct and indirect effect has been implemented for the Goddard radiation scheme and the Lin et al. microphysics

Processes in the GOCART <u>aerosol</u> and <u>chemistry modules</u>

- Simple chemistry (gas-to-particle conversion)
- Dry deposition and settling
- Wet deposition
- Hygroscopic growth for black and organic carbon as a function of RH

GOCART dust and sea-salt modules

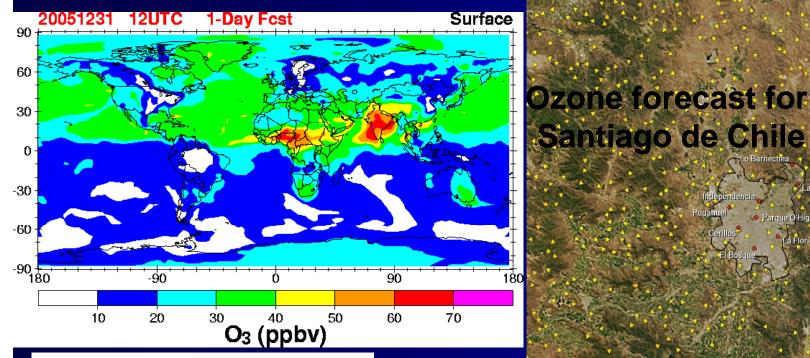
• Dust:

- Global Calculated as a function of fraction of erodible area (currently 1x1 degree resolution), porosity, and surface wind speed (Ginoux et al. 2001)
- Asian region also including the recent desertification areas in the Inner Mongolia province in China (Chin et al. 2003)
- Total 5 size bins 0.1 10 μm

• Sea-salt:

- Calculated as a function of surface wind speed (Gong et al., 2003)
- 4 size bins 0.1 10 μm (1 submicron, 3 super micron)

GOCART Global PM Emissions Data set for WRF/Chem (excluding historic volcanic and biomass burning emissions)


• Anthopogenic (SO₂, BC, OC):

- Global IPCC 2000, seasonal variations
- Asian region most recent emission work from Streets et al., 2002
- Biogenic:
 - DMS (dimethyl sulfide) from the ocean)
 - OC from vegetation (terpene)

Photolysis Packages – all coupled to aerosols and hydrometeors

- Madronich Photolysis
- Madronich F-TUV code also available, in V3 release, but not well tested
- Fast-j photolysis scheme

Use of chemical data from Global Chemistry Model (GCM) for boundary conditions, or 1-way nest, or 2-way nest

Global forecast by Max-Planck-Institue, Mainz, Germany (Lawrence, 2003)

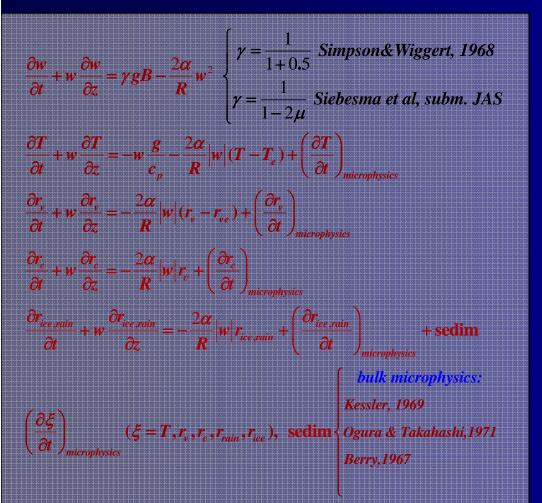
Now also available for MOZART, RAQMS, CHASER, and of course WRF/Chem

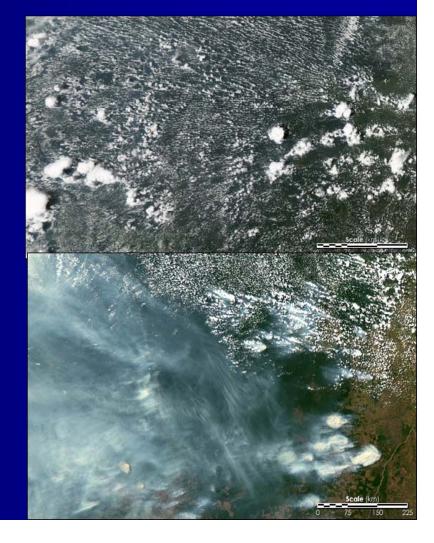
Provided by Rainer Schmitz and Mark Falvey, Univ. Of Chile

27 January 07:00

Santiago de Chile

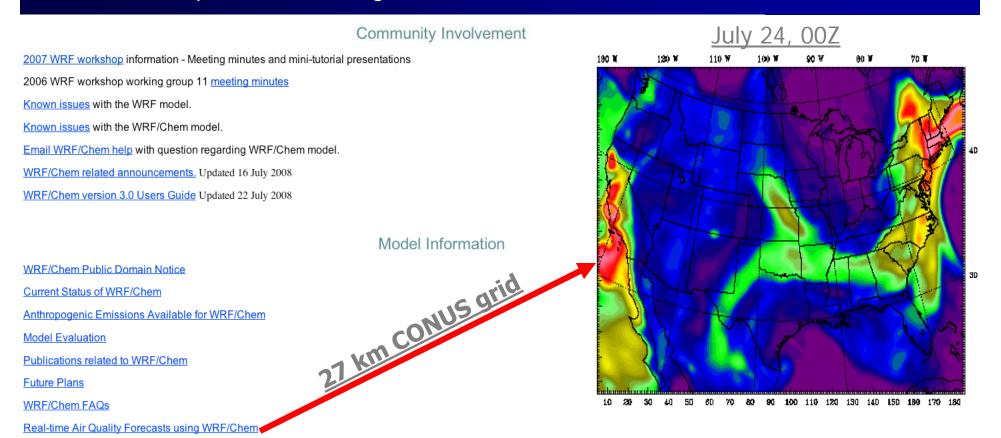
as Conde


Improved non-resolved convective transport


- 1. Ensemble approach (based on Grell/Devenyi parameterization)
 - Uses observed or predicted rainfall rates as met-input
 - Ensemble of entrainment/detrainment profiles and/or downdraft parameters to determine vertical redistribution of tracers
 - Ensembles may be weighted to determine optimal solution
 - <u>Can be used as 3-d scheme for smooth</u> transition to high resolution
- 2. Connected to photolysis and atmospheric radiation schemes
- 3. Working on ensemble approach for (2) and and aerosol connection

A model within a model : Fire Plumerise (Collaboration with Saulo Freitas from CPTEC in Brazil)

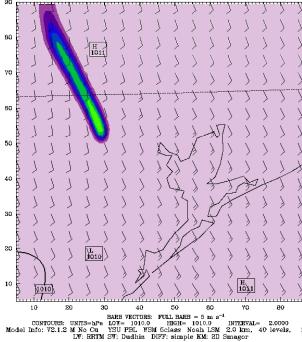
Initialized with <u>GOES-ABBA</u> <u>and MODIS</u>

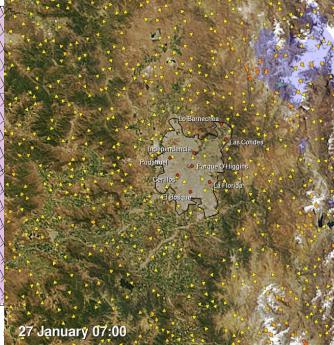

1-D Plume model

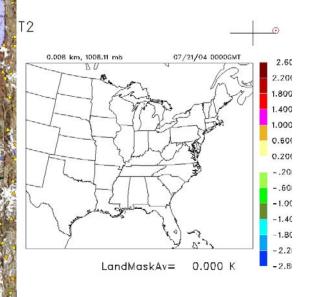
WRF/Chem real-time forecast now with wildfires (dx=27km on CONUS grid)

from http://wrf-model.org/WG11

Current potential applications


Fost: 3.00 h ALD concentration Sea-level pressure Horizontal wind vectors


Valid: 0300 UTC Sun 17 Sep 06 (2100 MDT Sat 16 Sep 06) Avg, k-index = 40 to 30 sm = 2 at k-index = 40



lobal limate han ge

AQ/weather/climate linkage

Distant line-up for WRF/Chem, with various groups working on these issues

- More aerosol modules
- Chemical data assimilation
 - 4dvar work in collaboration with Greg Carmichael and Hans Huang using WRF-var
 - Will create adjoint of WRF/Chem
 - 3dvar work at ESRL using GSI
- More choices for "interactive" parameterizations
 - CAMS radiation package
 - Various microphysics packages
 - GD convection parameterization

WRF/Chem Aerosol related work

- Graham Feingold and Hailong Wang (ESRL/CSD): Implementation of TelAviv sectional microphysics that includes CCN activation, condensation/evaporation, stochastic collection, and sedimentation
- Graham Feingold and Hailong Wang (ESRL/CSD): Implementation of double moment bulk microphysics scheme (Feingold et al. 1998)
- Gordon McFiggans (U of Manchester, UK), implementing their multicomponent aerosol approach
- Laura Fowler and others from CSU, implementing some of the RAMS microphysics routines into WRF
- Karla Longo and Saule Freitas (CPTEC, Brazil) looking at aerosol direct effect with BRAMS and WRF/Chem
- Source oriented approach from UC Davis (Mike Kleeman) was talked about